Поверхности второго порядка - Definition. Was ist Поверхности второго порядка
Diclib.com
Wörterbuch ChatGPT
Geben Sie ein Wort oder eine Phrase in einer beliebigen Sprache ein 👆
Sprache:

Übersetzung und Analyse von Wörtern durch künstliche Intelligenz ChatGPT

Auf dieser Seite erhalten Sie eine detaillierte Analyse eines Wortes oder einer Phrase mithilfe der besten heute verfügbaren Technologie der künstlichen Intelligenz:

  • wie das Wort verwendet wird
  • Häufigkeit der Nutzung
  • es wird häufiger in mündlicher oder schriftlicher Rede verwendet
  • Wortübersetzungsoptionen
  • Anwendungsbeispiele (mehrere Phrasen mit Übersetzung)
  • Etymologie

Was (wer) ist Поверхности второго порядка - definition

МНОЖЕСТВО НУЛЕЙ МНОГОЧЛЕНА ВТОРОЙ СТЕПЕНИ В ТРЁХМЕРНОМ ПРОСТРАНСТВЕ (АФФИННАЯ ИЛИ ПРОЕКТИВНАЯ, НЕОБЯЗАТЕЛЬНО ВЕЩЕСТВЕННАЯ)
Поверхности второго порядка
  • 200px
  • Коническая поверхность.
  • 200px
  • 200px
  • 200px
  • 200px
  • 200px
  • 200px
  • 200px
  • Поверхности второго порядка, получающиеся при различных значениях параметров уравнения

Поверхности второго порядка         

поверхности, декартовы прямоугольные координаты точек которых удовлетворяют алгебраическому уравнению 2-й степени:

a11x2 + a22y2 + a33z2 + 2a12xy + 2a23yz + 2a13xz + 2a14x + 2a24y + 2a34z + a44 = 0 (*)

Уравнение (*) может и не определять действительного геометрического образа, но для сохранения общности в таких случаях говорят, что оно определяет мнимую П. в. п. В зависимости от значений коэффициентов общего уравнения (*) оно может быть преобразовано с помощью параллельного переноса и поворота системы координат к одному из 17 приведённых ниже канонических видов, каждому из которых соответствует определённый класс П. в. п. Среди них выделяют пять основных типов поверхностей. Именно,

1) эллипсоиды

- эллипсоиды,

- мнимые эллипсоиды;

2) гиперболоиды:

- однополостные гиперболоиды,

- двуполостные гиперболоиды;

3) параболоиды (p > 0, q > 0):

- эллиптические параболоиды,

- гиперболические параболоиды;

4) конусы второго порядка:

- конусы,

- мнимые конусы;

5) цилиндры второго порядка:

- эллиптические цилиндры,

- мнимые эллиптические цилиндры,

- гиперболические цилиндры,

- параболические цилиндры.

Перечисленные П. в. п. относятся к т. н. нераспадающимся П. в. п.; распадающиеся П. в. п.:

- пары пересекающихся плоскостей,

- пары мнимых пересекающихся плоскостей,

х2 = а2 - пары параллельных плоскостей,

х2 =2 - пары мнимых параллельных плоскостей,

х2 = 0 - пары совпадающих плоскостей.

При исследовании общего уравнения П. в. п. важное значение имеют т. н. основные инварианты - выражения, составленные из коэффициентов уравнения (*) и не меняющиеся при параллельном переносе и повороте системы координат. Например, если

(aij = ajii),

то уравнение (*) определяет вырожденные П. в. п.: конусы и цилиндры второго порядка и распадающиеся П. в. п.; если определитель

,

то поверхность имеет единственный центр симметрии (центр П. в. п.) и называется центральной поверхностью. Если δ = 0, то поверхность либо не имеет центра, либо имеет бесконечно много центров.

Для П. в. п. установлена аффинная и проективная классификация. Две П. в. п. считают принадлежащими одному аффинному классу, если они могут быть переведены друг в друга некоторым аффинным преобразованием (аналогично определяются проективные классы П. в. п.). Каждому аффинному классу соответствует один из 17 канонических видов уравнения П. в. п. Проективные преобразования позволяют установить связь между различными аффинными классами П. в. п. Это объясняется тем, что при этих преобразованиях исчезает особая роль бесконечно удалённых элементов пространства. Например, эллипсоиды и двуполостные гиперболоиды, различные с аффинной точки зрения, принадлежат одному проективному классу П. в. п.

Лит.: Александров П. С., Лекции по аналитической геометрии..., М., 1968; Ильин В. А., Позняк Э. Г., Аналитическая геометрия, 2 изд., М., 1971; Ефимов Н. В., Квадратичные формы и матрицы, 5 изд., М., 1972.

А. Б. Иванов.

ПОВЕРХНОСТИ ВТОРОГО ПОРЯДКА         
поверхности, прямоугольные координаты точек которых удовлетворяют алгебраическим уравнениям 2-й степени. Среди поверхностей второго порядка эллипсоиды (в частности, сферы), гиперболоиды, параболоиды.
Поверхность второго порядка         
Поверхность второго порядка — геометрическое место точек трёхмерного пространства, прямоугольные координаты которых удовлетворяют уравнению вида

Wikipedia

Поверхность второго порядка

Поверхность второго порядка — геометрическое место точек трёхмерного пространства, прямоугольные координаты которых удовлетворяют уравнению вида

a 11 x 2 + a 22 y 2 + a 33 z 2 + 2 a 12 x y + 2 a 23 y z + 2 a 13 x z + 2 a 14 x + 2 a 24 y + 2 a 34 z + a 44 = 0 {\displaystyle a_{11}x^{2}+a_{22}y^{2}+a_{33}z^{2}+2a_{12}xy+2a_{23}yz+2a_{13}xz+2a_{14}x+2a_{24}y+2a_{34}z+a_{44}=0}

в котором по крайней мере один из коэффициентов a 11 {\displaystyle a_{11}} , a 22 {\displaystyle a_{22}} , a 33 {\displaystyle a_{33}} , a 12 {\displaystyle a_{12}} , a 23 {\displaystyle a_{23}} , a 13 {\displaystyle a_{13}} отличен от нуля. Является частным случаем квадрики.